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EXACT ANALYTICAL SOLUTION

OF THE KIRSCH PROBLEM WITHIN THE FRAMEWORK

OF THE COSSERAT CONTINUUM AND PSEUDOCONTINUUM

UDC 539.3.01M. A. Kulesh, V. P. Matveenko, and I. N. Shardakov

The Kirsch problem of one-sided tension of a plate with a circular hole is considered within the
framework of the nonsymmetric theory of elasticity under the assumption that material deformation
is described not only by the displacement vector but also by the rotation vector. The general analytical
solution of this problem is expressed in terms of the Bessel functions. The resulting solution is
compared with the corresponding solutions for a symmetric medium and Cosserat pseudomedium. A
macroparameter characterizing the distortion of the boundary of the circular hole upon deformation
is introduced.

Introduction. In 1910, the Cosserat brothers proposed a model of a medium according to which the
deformation of the medium is governed not only by the displacement vector u but also by the rotation vector ω,
which depend on coordinates and time. The medium modeled in this manner is called the Cosserat medium, and
the theory is called the moment or nonsymmetric theory of elasticity.

This theory was independently developed by several researchers [1–5] in the 1960s and 1970s. At that time,
the first analytical solutions of two-dimensional problems were obtained within the framework of the moment theory.
But most of the exact solutions were based on the simplifying assumption

ω =
1
2

rotu, (1)

which is called the constrained rotation or Cosserat pseudomedium. In this variant of the moment theory of
elasticity, the number of physical constants of an isotropic elastic body is reduced from six to four [6]. Moreover,
the structure of the resulting equations [1] is such that if, in particular, displacements are specified at the surface
of an elastic body, the normal component of the rotation vector depends on the displacement vector.

The aim of this paper is to construct and analyze the solution of the Kirsch problem of uniaxial tension of
an infinite plate with a central circular hole for a nonsymmetric medium. We perform a parametric analysis of the
exact solution and show that it can be used in experiments to identify the physicomechanical parameters of the
Cosserat continuum.

Kirsch was first to solve this problem by the methods of the classical theory of elasticity. Later, Muskhelishvili
[7] solved the problem by another method. In [6, 8, 9], this solution was generalized to the Cosserat pseudomedium.
Pal’mov [4] studied the stress concentration near the circular hole within the framework of the nonsymmetric theory
of elasticity.

It should be noted that the solution given in [4] does not allow one to obtain full information on the stress–
strain state in the neighborhood of the circular hole, in particular, to determine the degree of distortion of the hole
due to deformation.

In the present paper, the exact analytical solution of the Kirsch problem is obtained within the framework
of the general moment theory of elasticity. The solution is written in a dimensionless form, which enables one to
perform its parametric analysis.
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Fig. 1

1. Formulation of the Problem. We write the basic relations of the moment theory of elasticity [1]:
— Equations of equilibrium

∇ · σ̃ +X = 0, σ̃t : Ẽ +∇ · µ̃+ Y = 0; (1.1)

— Geometrical relations

γ̃ = ∇u− Ẽ · ω, χ̃ = ∇ω; (1.2)

— Physical relations

σ̃ = 2µγ̃(S) + 2αγ̃(A) + λI1(γ̃)ẽ, µ̃ = 2γχ̃(S) + 2εχ̃(A) + βI1(χ̃)ẽ. (1.3)

With allowance for relations (1.1)–(1.3), the equations of equilibrium for the displacement vector u and the
rotation vector ω are written in the form

(2µ+ λ) grad divu− (µ+ α) rot rotu+ 2α rotω +X = 0,
(1.4)

(β + 2γ) grad divω − (γ + ε) rot rotω + 2α rotu− 4αω + Y = 0.

In (1.1)–(1.4), X is the vector of mass forces, Y is the vector of mass moments, u is the displacement vector,
ω is the rotation vector, γ̃ and χ̃ are the strain and flexure–torsion tensors, respectively, σ̃ and µ̃ are the stress
and couple-stress tensors, respectively, µ and λ are the Lamé constants, α, β, γ, and ε are the physical constants
of the material within the framework of the moment theory of elasticity, Ẽ is the Levi-Civita tensor of the third
rank, ( · )(S) is the operation of symmetrization, ( · )(A) is the operation of alternation, ∇( · ) is the nabla operator,
I1( · ) is the first invariant of the tensor, and ẽ is the unit tensor [10]. In contrast to the classical theory, the tensors
γ̃ and σ̃ are nonsymmetric.

We also consider the simplified theory [1] in which the rotation vector is assumed to satisfy relation (1).
Below, we call a medium with this property the Cosserat pseudomedium.

The physical relations of the Cosserat pseudomedium have the form

σ̃ = 2µγ̃(A) + λI1(γ̃)ẽ− (1/2)∇ · µ̃ · Ẽ, µ̃ = 2γχ̃(S) + 2εχ̃(A) + βI1(χ̃)ẽ. (1.5)

As in the complete moment formulation, the components of the strain and flexure–torsion tensors are determined
with the use of relation (1.2). With allowance for (1.5), however, the equations of equilibrium of the Cosserat
pseudomedium differ from (1.4):

µ∇2 u+ (µ+ λ) grad divu+ (1/4)(γ + ε) rot rot∇2 u+X = 0. (1.6)

We consider the problem of one-sided tension of a plate with a circular hole. Let the boundary of the hole
be stress-free and tensile forces of a constant intensity p act in the Ox direction at infinity (Fig. 1).

By virtue of symmetry, we seek the solution of the problem in a cylindrical system of coordinates (ρ, ϕ, z)
as an expansion into harmonics
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u(ρ, ϕ) = {F (ρ) + U(ρ) cos 2ϕ, V (ρ) sin 2ϕ, 0}, ω(ρ, ϕ) = {0, 0, ω(ρ) sin 2ϕ}. (1.7)

The boundary conditions at infinity and at the stress-free contour of the hole have the form

n1 · σ̃
∣∣∣
ρ=R0

= 0, n1 · µ̃
∣∣∣
ρ=R0

= 0, n2 · σ̃
∣∣∣
ρ→∞

= p, n2 · µ̃
∣∣∣
ρ→∞

= 0,

where n1 = {−1, 0} is the external normal to the circle of radius R0 and n2 = {1, 0} is the external normal to the
circle of radius R1 →∞.

In cylindrical coordinates, the components pρ and pϕ of the vector p are written in the forms pρ = p(1 +
cos 2ϕ)/2 and pϕ = −(p sin 2ϕ)/2. Passing to the components of the stress and moment tensors, we write the
boundary conditions as follows:

σρρ

∣∣∣
ρ=R0

= 0, σρϕ

∣∣∣
ρ=R0

= 0, µρz

∣∣∣
ρ=R0

= 0,

σρρ

∣∣∣
ρ→∞

= pρ, σρϕ

∣∣∣
ρ→∞

= pϕ, µρz

∣∣∣
ρ→∞

= 0.
(1.8)

Thus, the solution of the problem reduces to determining four functions F (ρ), U(ρ), V (ρ), and ω(ρ) for the
Cosserat medium and three functions F (ρ), U(ρ), and V (ρ) for the Cosserat pseudomedium.

2. Analytical Solution of the Equation of Equilibrium. Substituting the displacement and rotation
vectors (1.7) into (1.4), we obtain equations of equilibrium in the form of a system of the second-order linear
differential equations for the functions F (ρ), U(ρ), V (ρ), and ω(ρ):

d2

dρ2
U(ρ) = −1

ρ

d

dρ
U(ρ)− A11

ρ2
U(ρ)− A12

ρ

d

dρ
V (ρ)− A13

ρ2
V (ρ) +

A14

ρ
ω(ρ),

d2

dρ2
V (ρ) = −1

ρ

d

dρ
V (ρ)− A21

ρ2
V (ρ)− A22

ρ

d

dρ
U(ρ)− A23

ρ2
U(ρ)−A24

d

dρ
ω(ρ),

d2

dρ2
ω(ρ) = −1

ρ

d

dρ
ω(ρ) + 4A31ω(ρ) +

4
ρ2
ω(ρ)− 2A31

d

dρ
V (ρ)− 2A31

ρ
V (ρ)− 4A31

ρ
U(ρ),

(2.1)

d2

dρ2
F (ρ) = −1

ρ

d

dρ
F (ρ) +

1
ρ2
F (ρ).

Here

A11 = −λ+ 6µ+ 4α
λ+ 2µ

, A12 = −2
α− λ− µ
λ+ 2µ

, A13 = −2
λ+ 3µ+ α

λ+ 2µ
,

A14 = − 4α
λ+ 2µ

, A21 = −4λ+ 9µ+ α

α+ µ
, A22 = 2

α− λ− µ
α+ µ

,

A23 = −2
λ+ 3µ+ α

α+ µ
, A24 = − 2α

α+ µ
, A31 =

α

γ + ε
.

Substituting the displacement and rotation vectors (1.7) into (1.6), we obtain equations of equilibrium for
the Cosserat pseudomedium in the form of a system of linear differential equations for the functions F (ρ), U(ρ),
and V (ρ):

d3

dρ3
V (ρ) = −2

ρ

d2

dρ2
V (ρ)−

(
4B1 −

5
ρ2

) d
dρ

V (ρ) +
(

4
B3

ρ
+

3
ρ3

)
V (ρ)

−
(

2B2ρ+
2
ρ

) d2

dρ2
U(ρ)−

(
2B2 −

2
ρ2

) d
dρ

U(ρ) +
(

2
B4

ρ
+

6
ρ3

)
U(ρ),

d4

dρ4
V (ρ) = −2

ρ

d3

dρ3
V (ρ) +

(
4B5 +

7
ρ2

) d2

dρ2
V (ρ) (2.2)

+
(

4
B5

ρ
− 7
ρ3

) d
dρ

V (ρ)−
(

4
B6

ρ2
+

9
ρ4

)
V (ρ)− 2

ρ

d3

dρ3
U(ρ)
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+
4
ρ2

d2

dρ2
U(ρ)−

(
8
B1

ρ
− 2
ρ3

) d
dρ

U(ρ)−
(

8
B3

ρ2
+

18
ρ4

)
U(ρ),

d2

dρ2
F (ρ) = −1

ρ

d

dρ
F (ρ) +

1
ρ2
F (ρ).

Here

B1 =
λ+ µ

γ + ε
, B2 =

λ+ 2µ
γ + ε

, B3 =
λ+ 3µ
γ + ε

, B4 =
λ+ 6µ
γ + ε

, B5 =
µ

γ + ε
, B6 =

4λ+ 9µ
γ + ε

.

The general solution of system (2.1) has the form

F (ρ) = C1ρ+ C2
1
ρ
, U(ρ) =

8∑
i=3

CiUi(ρ), V (ρ) =
8∑
i=3

CiVi(ρ), ω(ρ) =
8∑
i=3

Ciωi(ρ),

where Ui(ρ), Vi(ρ), ωi(ρ) (i = 3, . . . , 8) are particular solutions of system (2.1) and Ci are arbitrary constants
determined from the boundary conditions (1.8).

As U3(x), V3(x), U4(x), V4(x), U5(x), V5(x), U6(x), and V6(x), we use particular solutions corresponding to
the classical theory of elasticity, and ω3(x), ω4(x), ω5(x), and ω6(x) are obtained with the use of relation (1). This
approach is substantiated in [1]. The remaining particular solutions, which we call the moment solutions, are found
directly from system (2.1).

For convenient analysis of the resulting solution, we nondimensionalize all quantities. In this case, the
dimensionless parameters ρ, uρ, uϕ, ωz, γij , χij , σij , µij , and p are related to the dimensional parameters ρ̂, ûρ,
ûϕ, ω̂z, γ̂ij , χ̂ij , σ̂ij , µ̂ij , and p̂ by the formulas

ρ̂ = R0ρ, ûi = R0ui, σ̂ij = µσij , p̂ = µp,
(2.3)

µ̂ij = R0µµij , γ̂ij = γij , χ̂ij = χij/R0.

Furthermore, we introduce three dimensionless parameters one of which depends on the characteristic dimension R0:

A = R0

√
µ

B(γ + ε)
, B =

α+ µ

α
, C =

γ − ε
γ + ε

. (2.4)

Using (2.3) and (2.4), we obtain the general solution for the components of the displacement and rotation
vectors, and stress and couple-stress tensors in the dimensionless form:

uρ(ρ, ϕ) = C1ρ+
C2

ρ
+
(C3

ρ3
+
C4

ρ
+ C5ρ+ C6ρ

3 + C7U7(ρ) + C8U8(ρ)
)

cos 2ϕ,

uϕ(ρ, ϕ) =
(C3

ρ3
− C4

æ− 1
(æ + 1)ρ

− C5ρ− C6
æ + 3
æ− 3

ρ3 + C7V7(ρ) + C8V8(ρ)
)

sin 2ϕ,

ωz(ρ, ϕ) =
(C4

ρ2
− C6

3(æ + 1)
3− æ

ρ2 + C7ω7(ρ) + C8ω8(ρ)
)

sin 2ϕ,

σρρ(ρ, ϕ) = C1
4

æ− 1
− 2C2

ρ2
+
(
− C3

6
ρ4
− C4

8
(æ + 1)ρ2

+ 2C5 + C7S
(7)
ρρ (ρ) + C8S

(8)
ρρ (ρ)

)
cos 2ϕ,

σρϕ(ρ, ϕ) =
(
− C3

6
ρ4
− C4

4
(æ + 1)ρ2

− 2C5 − C6
12

3− æ
ρ2 + C7S

(7)
ρϕ (ρ) + C8S

(8)
ρϕ (ρ)

)
sin 2ϕ,

(2.5)
σϕρ(ρ, ϕ) =

(
− C3

6
ρ4
− C4

4
(æ + 1)ρ2

− 2C5 − C6
12

3− æ
ρ2 + C7S

(7)
ϕρ (ρ) + C8S

(8)
ϕρ (ρ)

)
sin 2ϕ,

σϕϕ(ρ, ϕ) = C1
4

æ− 1
+

2C2

ρ2
+
(
C3

6
ρ4
− 2C5 − C6

24
3− æ

ρ2 + C7S
(7)
ϕϕ(ρ) + C8S

(8)
ϕϕ(ρ)

)
cos 2ϕ,

µρz(ρ, ϕ) =
(
− C4

2
A2Bρ3

− C6
6(æ + 1)

(3− æ)A2B
ρ+ C7M

(7)
ρz (ρ) + C8M

(8)
ρz (ρ)

)
sin 2ϕ,
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µϕz(ρ, ϕ) =
(
C4

2
A2Bρ3

− C6
6(æ + 1)

(3− æ)A2B
ρ+ C7M

(7)
ϕz (ρ) + C8M

(8)
ϕz (ρ)

)
cos 2ϕ,

µzρ(ρ, ϕ) = Cµρz(ρ, ϕ), µzϕ(ρ, ϕ) = Cµϕz(ρ, ϕ), D = |uρ(R0, 0)/uρ(R0, π/2)|.

Here æ = (3µ+λ)/(µ+λ) and D is a macroquantity that characterizes the distortion of the contour of the circular
hole caused by uniaxial load (this quantity can be measured in experiments).

The functions ρ of the constants C7 and C8 in (2.5) are determined by the corresponding particular moment
solutions and have the form

U7(ρ) =
1
A2ρ

I0(2Aρ)− 1
A3ρ2

I1(2Aρ), U8(ρ) =
1
A2ρ

K0(2Aρ) +
1

A3ρ2
K1(2Aρ),

V7(ρ) =
1
A2ρ

I0(2Aρ)− 1 +A2ρ2

A3ρ2
I1(2Aρ), V8(ρ) =

1
A2ρ

K0(2Aρ) +
1 +A2ρ2

A3ρ2
K1(2Aρ),

ω7(ρ) = −BI0(2Aρ) +
B

Aρ
I1(2Aρ), ω8(ρ) = −BK0(2Aρ)− B

Aρ
K1(2Aρ),

S(7)
ρρ (ρ) = − 6

A2ρ2
I0(2Aρ) +

6 + 4A2ρ2

A3ρ3
I1(2Aρ),

S(8)
ρρ (ρ) = − 6

A2ρ2
K0(2Aρ)− 6 + 4A2ρ2

A3ρ3
K1(2Aρ),

S(7)
ρϕ (ρ) = − 6

A2ρ2
I0(2Aρ) +

6 + 2A2ρ2

A3ρ3
I1(2Aρ),

(2.6)

S(8)
ρϕ (ρ) = − 6

A2ρ2
K0(2Aρ)− 6 + 2A2ρ2

A3ρ3
K1(2Aρ),

S(7)
ϕρ (ρ) = −6 + 4A2ρ2

A2ρ2
I0(2Aρ) +

6 + 6A2ρ2

A3ρ3
I1(2Aρ),

S(8)
ϕρ (ρ) = −6 + 4A2ρ2

A2ρ2
K0(2Aρ)− 6 + 6A2ρ2

A3ρ3
K1(2Aρ),

S(7)
ϕϕ(ρ) =

6
A2ρ2

I0(2Aρ)− 6 + 4A2ρ2

A3ρ3
I1(2Aρ), S(8)

ϕϕ(ρ) =
6

A2ρ2
K0(2Aρ) +

6 + 4A2ρ2

A3ρ3
K1(2Aρ),

M (7)
ρz (ρ) =

2
A2ρ

I0(2Aρ)− 2 + 2A2ρ2

A3ρ2
I1(2Aρ), M (8)

ρz (ρ) =
2
A2ρ

K0(2Aρ) +
2 + 2A2ρ2

A3ρ2
K1(2Aρ),

M (7)
ϕz (ρ) = − 2

A2ρ
I0(2Aρ) +

2
A3ρ2

I1(2Aρ), M (8)
ϕz (ρ) = − 2

A2ρ
K0(2Aρ)− 2

A3ρ2
K1(2Aρ).

Here I0(ρ) and I1(ρ) are the modified Bessel functions of the first kind [11, 12], which have the following represen-
tations as ρ→∞:

Im(ρ) =
∞∑
k=0

(ρ/2)2k+m

Γ(k + 1)Γ(m+ k + 1)
,

and K0(ρ) and K1(ρ) are the modified Bessel functions of the second kind or the Macdonald functions which tend
to zero as ρ→∞:

Km(ρ) = (−1)m+1Im(ρ)
(

ln
ρ

2
+C

)
+

1
2

m−1∑
k=0

(−1)k
(m− k − 1)!

k!

(ρ
2

)2k−m
+

(−1)m

2

∞∑
k=0

(ρ/2)2k+m

k!(m+ k)!

(
k∑
s=1

1
s

+
k+m∑
s=1

1
s

)
(m is an integer and C = 0.5772 . . . is the Euler constant).
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Using the boundary conditions (1.8), we obtain the system of linear algebraic equations A{C1, . . . , C8}t =
{0, 0, 0, 0, p/2, p/2,−p/2, 0}t for the constants C1, . . . , C8 (R1 →∞), where

A =



4
æ− 1

− 2
R2

0

0 0 0 0 0 0

0 0 − 6
R4

0

− 8
(æ + 1)R2

0

2 0 S(7)
ρρ (L) S(8)

ρρ (L)

0 0 − 6
R4

0

− 4
(æ + 1)R2

0

−2 − 12R2
0

3− æ
S(7)
ρϕ (L) S(8)

ρϕ (L)

0 0 0 − 2
A2BR3

0

0 − 6(æ + 1)R2
0

(3− æ)A2B
M (7)
ρz (L) M (8)

ρz (L)

4
æ− 1

− 2
R2

1

0 0 0 0 0 0

0 0 − 6
R4

1

− 8
(æ + 1)R2

1

2 0 S(7)
ρρ (2AR1) S(8)

ρρ (2AR1)

0 0 − 6
R4

1

− 4
(æ + 1)R2

1

−2 − 12R2
1

3− æ
S(7)
ρϕ (2AR1) S(8)

ρϕ (2AR1)

0 0 0 − 2
A2BR3

1

0 − 6(æ + 1)R2
1

(3− æ)A2B
M (7)
ρz (2AR1) M (8)

ρz (2AR1)



.

The solution of this system has the form

C1 =
p(æ− 1)

8
, C2 =

pR2
0

4
,

C3 = −pR
4
0

4

( 2L(BL2 + 4æ + 4)K0(L)
L2(2BLK0(L)+(BL2+4B+2æ+2)K1(L))

+
(BL4+4BL2+2L2+2L2æ + 16æ + 16)K1(L)
L2(2BLK0(L)+(BL2+4B+2æ + 2)K1(L))

)
, (2.7)

C4 =
pR2

0(æ + 1)
4

B(2LK0(L) + (4 + L2)K1(L))
2BLK0(L) + (BL2 + 4B + 2æ + 2)K1(L)

, C5 =
p

4
,

C6 = 0, C7 = 0, C8 =
p(æ + 1)L

2(2BLK0(L) + (BL2 + 4B + 2æ + 2)K1(L))
.

Here the dimensionless quantity L = 2AR0 is introduced for brevity.
The solution of system (2.2) corresponding to the Cosserat pseudomedium is also determined by relations

(2.5)–(2.7). In this case, however, B = 1 (2.4), which corresponds to the limiting case as α→∞.
The displacement vector and the components of the stress tensor obtained within the framework of the

symmetric theory of elasticity and the rotation vector determined by relation (1) have the form

u∗ρ(ρ, ϕ) = C∗1ρ+
C∗2
ρ

+
(C∗3
ρ3

+
C∗4
ρ

+ C∗5ρ
)

cos 2ϕ,

u∗ϕ(ρ, ϕ) =
(C∗3
ρ3
− C∗4

æ− 1
(æ + 1)ρ

− C∗5ρ
)

sin 2ϕ, ω∗z(ρ, ϕ) =
C∗4
ρ2

sin 2ϕ,

σ∗ρρ(ρ, ϕ) =
4C∗1

æ− 1
− 2C∗2

ρ2
+
(
− C∗3

6
ρ4
− 8C∗4

(æ + 1)ρ2
+ 2C∗5

)
cos 2ϕ, (2.8)

σ∗ρϕ(ρ, ϕ) =
(
− C∗3

6
ρ4
− C∗4

4
(æ + 1)ρ2

− 2C∗5
)

sin 2ϕ, σ∗ϕρ(ρ, ϕ) = σ∗ρϕ(ρ, ϕ),

σ∗ϕϕ(ρ, ϕ) = C∗1
4

æ− 1
+

2C∗2
ρ2

+
(
C∗3

6
ρ4
− 2C∗5

)
cos 2ϕ, D∗ =

∣∣∣ u∗ρ(R0, 0)
u∗ρ(R0, π/2)

∣∣∣,
where C∗1 = p(æ− 1)/8, C∗2 = pR2

0/4, C∗3 = −pR4
0/4, C∗4 = pR2

0(æ + 1)/4, C∗5 = p/4, and C∗6 = 0 [7].
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Fig. 2

Fig. 3
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Fig. 4

3. Parametric Analysis of the Solution. Using the above solutions, we compare the stress–strain states
in the neighborhood of a circular hole, obtained for the Cosserat medium, Cosserat pseudomedium, and symmetric
medium.

Figure 2 shows the rotation-vector component ωz versus the coordinate ρ for ϕ = π/4 (Fig. 2a), the stress-
tensor component σρρ versus the coordinate ρ for ϕ = 0 (Fig. 2b), the stress-tensor component σρϕ versus the
coordinate ρ for ϕ = π/4 (Fig. 2c), and the stress-tensor component σϕρ versus the coordinate ρ for ϕ = π/4
(Fig. 2d). The solid curves refer to the nonsymmetric medium, the dashed curves to the symmetric medium, and
the dotted curves to the Cosserat pseudomedium. These diagrams are obtained for the physical constants α = 0.5,
γ = ε = 1, and æ = 1.8 and the radius of the internal circle R0 = 0.1.

Figure 3a–d shows the radial component uρ and azimuthal component uϕ of the displacement vector, the
rotation-vector component ωz, and the stress-tensor component σϕϕ, respectively, as functions of the coordinate ϕ
for ρ = R0 (notation the same as in Fig. 2).

It follows from the graphs shown in Fig. 3a that one can use the parameter D characterizing the distortion
of the contour of a circular hole as an experimentally measured macroquantity.

To estimate the discrepancy between solution (2.5) obtained within the framework of the nonsymmetric
theory and the classical solution (2.8), we introduce the quantity δ = |(D−D∗)/D∗| · 100 %. Figure 4 shows δ as a
function of the hole radius R0 for various α. One can see that the effect of the moment description of the behavior
of the material on the quantity δ becomes pronounced as the characteristic dimension (radius of the circular hole)
decreases. The reason is that the dimensionless moment solution depends on the characteristic dimension, whereas
the classical solution does not.

Conclusions. The qualitative and numerical analysis of the analytical solutions considered above and
dependences plotted in Figs. 2–4 leads to the following conclusions.

Nondimensionalization of the resulting analytical solutions shows that the dimensionless moment solution
depends on the characteristic dimension, and the classical solution does not.

As the size of the circular hole is diminished, the discrepancy between the macroquantities obtained within
the framework of the nonsymmetric theory and classical theories becomes more pronounced (Fig. 4).

As an experimentally measured quantity, one can use the parameter D that characterizes the distortion of
the circular hole.

The discrepancies between the classical and nonsymmetric solutions and the solution obtained for the
Cosserat pseudomedium depend on the material constants. The classical solution and the solution for the Cosserat
pseudomedium are the limiting cases of the nonsymmetric solution as α→ 0 and α→∞, respectively. The discrep-
ancy between the classical solution and the solution for the Cosserat pseudomedium is determined by the quantity
γ + ε.
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